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problems with discontinuous nonlinearities are obtained by using our extended double linking
theorem.
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1 Introduction

Recently, the nonsmooth analysis based on the critical point theorem has been attracted the
interest by many people, because its intensive applications in the practical problems. How-
ever, the tools in our hand are used only the usual critical point theorem such as, nonsmooth
mountain pass theorem, nonsmooth saddle point theorem (see [1,6,8]). One of the main dif-
ficulties in applying those nonsmooth critical point theorems is the nonsmooth Palais Smale
condition. Thus, in order to kill this difficulty, we have to take our energy to verify it. In
the present paper, our abstract results will not need the energy function to satisfy the PS
condition, and we obtain two pairs of bounded Palais Smale sequences. The most interest is
that when the energy function satisfies the appropriate conditions, we obtain two solutions.

The notion of double linking was first introduced by Schechter and Zou [14], and a double
linking theorem had been developed by them. The purpose of this paper is to present a gen-
eralization of the double linking theorem. In this generalization the energy functional is not
required to be smooth, it is only locally Lipschitz. In the second half of the paper the abstract
multiplicity result is applied to semilinear resonant elliptic problems with discontinuous
nonlinearities. Such nonlinear partial differential equations with discontinuous nonlineari-
ties have been increasedly studied in the latest years because it arises in physics problems, as
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nonlinear elasticity theory or mechanics, and engineering topics. In this direction, concrete
applications can be found in the books of Naniewicz–Panagiotopoulos [11].

The existence or multiplicity results for elliptic resonance problems with nonsmooth
potential {−�u ∈ λku + [g−(x, u(x)), g+(x, u(x))], in �,

u = 0, on ∂�,
(1)

where � ⊂ RN (N ≥ 3) be a nonempty bounded open subset with a smooth boundary
∂�, λk, g−(x, t) and g+(x, t) is defined in Sect. 3, have been obtained by many authors
through using the nonsmooth critical point theory, see [4,5,7–10,12,15] and the references
therein. However, in order to obtain the solutions of the problem (1), our technique is firstly
need to prove the following elliptic problems with discontinuous nonlinearities{−�u ∈ 1

λ
[λku + [g−(x, u(x)), g+(x, u(x))]] in �;

u = 0, on ∂�
(2)

where λ ∈ (0, 1], has infinitely many solutions. secondly, by taking the limit with respect to
λ for the problem (2), we obtain problem (1) has two nontrivial solutions.

Our approach is based on nonsmooth critical point theory for locally Lipschitz functionals,
as this was originally formulated by Chang [1]. For the convenience of the reader, below we
recall some basic definitions and facts from this theory.

Let E be a real Banach space and E∗ its conjugate space, we denote by 〈·, ·〉 the dulity
pairing between E∗ and E . A function ϕ : E → R is called locally Lipschitz if for each
u ∈ E there exists a neighborhood U of u and a constant L ≥ 0 such that

|ϕ(x) − ϕ(y)| ≤ L‖x − y‖ ∀x, y ∈ U.

For a locally Lipschitz function ϕ : E → R, we define the generalized directional deriv-
ative of ϕ at point u in the direction h ∈ E as

ϕ◦(u; h) = ¯lim
v→0,s↓0

1

s
[ϕ(u + v + sh) − ϕ(u + v)].

The generalized gradient of the locally Lipschitz function ϕ at the point u, denoted by ∂ϕ(u),
is the set

∂ϕ(u) = {w ∈ E∗ : 〈w, v〉 ≤ ϕ0(u; v),∀v ∈ E}.
If ϕ ∈ C1(E), then ∂ϕ(u) = {ϕ′(u)} for all u ∈ E . We set m(u) = minw∈∂ϕ(u) ‖w‖. Then
the function m(u) exists and is lower semi-continuous. A point u ∈ E is said to be a critical
point of the locally Lipschitz function ϕ : E → R, if 0 ∈ ∂ϕ(u). If u ∈ E is a critical point,
the value c = ϕ(u) is said to be a critical value of ϕ.

For more details, we refer to [1–3] for the properties of the generalized directional deriv-
ative and the generalized gradient.

The critical point theory for smooth functionals uses a compactness condition known as
the Palais-Smale condition (PS). In the present nonsmooth setting this condition takes the
following form:

A locally Lipschitz function ϕ : E → R is said to satisfy the non-smooth PS-condition, if
any sequence {xn} ⊆ E with {ϕ(xn)} is bounded and m(xn) → 0 has a strongly convergent
subsequence.

During the proof of our main results, we will use some basic concepts and properties from
set-valued analysis, for convenience, we list them as follows:
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Definition 1 ([6]) Suppose X, Y are Hausdorff topological spaces. Let F : X → 2Y be a
multifunction. We say that F is upper semicontinuous at x0, if for any open subset V ⊂ Y
with F(x0) ⊂ V , there exists U ∈ N (x0), such that F(U ) ⊂ V . If F is upper semicontinuous
at every x0 ∈ X , we say that F is upper semicontinuous.

Proposition 1 ([6]) If ϕ : X → R is a locally Lipschitz function, then the multifunction
x → ∂ϕ(x) is upper semicontinuous from X into X∗

w∗ .

The paper is arranged as follows. In Sect. 2, we establish the double linking theorem for
nonsmooth locally Lipschitz functions. In Sect. 3, we are devoted to multiplicity results for
elliptic resonance problems with discontinuous nonlinearities.

2 Abstract results

Let E be a reflexive Banach space. Define a class of contractions of E as follows: � =
{�(·, ·) ∈ C([0, 1] × E, E) : �(0, ·) = id; for each t ∈ [0, 1], �(t, ·) is a homeomorphism
of E onto itself and �−1(·, ·) is continuous on [0, 1) × E ; there exists a x0 ∈ E such that
�(1, x) = x0 for each x ∈ E and that �(t, x) → x0 as t → 1 uniformly on bounded subset
of E}.

The following concepts of linking and double linking were introduced by Schechter-
Tintarev[13] and Schechter-Zou [14], respectively.

Definition 2 [14] A subset A of E is linked to a subset B of E if A
⋂

B = ∅ and for every
� ∈ �, there is a t ∈ [0, 1] such that �(t, A)

⋂
B �= ∅.

Definition 3 [14] Let A, B ⊂ E be two closed subsets, if A and B link each other, we call
them double linking.

A typical example of double linking is the following ([14]):
Let E = M

⊕
N , where M, N are closed subspaces with one of them finite dimensional.

If y0 ∈ M\{0} and 0 < ρ < R, then the sets

A = {u = v + sy0 : v ∈ N , s ≥ 0, ‖u‖ = R}
⋃[

N
⋂

B̄R

]

and

B = M
⋂

∂ Bρ

link each other in the sense of definition 3, where Br = {u ∈ E : ‖u‖ < r}.
The purpose of this section is to establish the existence of two bounded nonsmooth Palais-

Smale sequences from the double linking which yield either two critical points with different
critical values or two critical points in two nonintersection sets.

Let Gλ(u) = λI (u) − J (u), λ ∈ 	 ⊂ (0,+∞). I ∈ C1(X, R) and J : E → R is a
locally Lipschitz functional and they map bounded set into bounded set, respectively.

Assume that

(H1) I (u) ≥ 0 for all u ∈ E and either I (u) → ∞ or |J (u)| → ∞ as ‖u‖ → ∞.
(H2) I (u) ≤ 0 for all u ∈ E and either I (u) → −∞ or |J (u)| → ∞ as ‖u‖ → ∞.

Furthermore, we suppose that

(H3) a0(λ) = supA Gλ ≤ b0(λ) = inf B Gλ for any λ ∈ 	.
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In this section, our main results are the following theorem:

Theorem 1 Assume that (H1) (or (H2)) and (H3) hold,

(1) If A links B and A is bounded, then for almost all λ ∈ 	 there exists uk(λ) ∈ E such
that supk ‖uk(λ)‖ < ∞, mλ(uk(λ)) → 0 and

Gλ(uk(λ)) → a(λ) = inf
�∈�

sup
s∈[0,1],u∈A

Gλ(�(s, u)), k → ∞.

Furthermore, if a(λ) = b0(λ) then dist (uk(λ), B) → 0, k → ∞.
(2) If B links A and B is bounded, then for almost all λ ∈ 	 there exists vk(λ) ∈ E such

that supk ‖vk(λ)‖ < ∞, mλ(vk(λ)) → 0 and

Gλ(vk(λ)) → b(λ) = inf
�∈�

sup
s∈[0,1],v∈B

Gλ(�(s, v)), k → ∞.

Furthermore, if b(λ) = a0(λ) then dist (vk(λ), A) → 0, k → ∞.

For the reader’s convenience, we give the rough proof.

Proof (1) First, we prove that conclusion (1) with the first alternative (H1) is true. Evidently,
a(λ) ≥ b0(λ) since A links B. By (H3), the map λ → a(λ) is nondecreasing, hence, a′(λ)

exists for almost all λ ∈ 	. For fixed λ ∈ 	, let λn ∈ (λ, 2λ)
⋂

	 satisfy λn → λ as
n → ∞, then there exists n̄(λ) such that

a′(λ) − 1 ≤ a(λn) − a(λ)

λn − λ
≤ a′(λ) + 1

for n ≥ n̄(λ).

As in the proof of Theorem 2.1 in [14], we can obtain that:

(10) there exist �n ∈ �, k0 = k0(λ) > 0 such that

‖�n(s, u)‖ ≤ k0

whenever

Gλ(�n(s, u)) ≥ a(λ) − (λn − λ)

(20)

Gλ(�n(s, u)) ≤ Gλn (�n(s, u)) ≤ a(λ) + (a′(λ) + 2)(λn − λ); (3)

(30) We consider the case of a(λ) > b0(λ). For ε ∈
(

0,
a(λ)−b0(λ)

2

)
, we define

Qε(λ) = {u ∈ E : ‖u‖ ≤ k0 + 4, |Gλ(u) − a(λ)| ≤ 4ε}. (4)

Then we can obtain that Qε(λ) �= ∅ (see Step 3 of Theorem 2.1 in [14]).

Next, we claim that there exists u ∈ Qε(λ) such that mλ(u) < ε for ε ∈
(

0,
a(λ)−b0(λ)

2

)

small enough. By negation, we assume that there exists ε0 ∈
(

0,
a(λ)−b0(λ)

2

)
such that

mλ(u0) ≥ 3ε0 for all u0 ∈ Qε0(λ), hence there exists a w0 ∈ ∂Gλ(u0) such that ‖w0‖ =
mλ(u0), then B‖w0‖

⋂
∂Gλ(u0) = ∅, where Br is the ball centered at θ with radius r in E∗.

Due to the separation theorem for convex sets, there exists h0 ∈ E such that ‖h0‖ = 1,

〈x∗, h0〉 ≥ 〈w0, h0〉 ≥ 〈w, h0〉
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for each w ∈ B‖w0‖ and each x∗ ∈ ∂Gλ(u0). By the Hahn-Banach theorem,

max
w∈B‖w0‖

〈w, h0〉 = ‖w0‖ · ‖h0‖ = ‖w0‖

then we have

〈x∗, h0〉 ≥ ‖w0‖ = mλ(u0) ≥ 3ε0 > 2ε0, ∀x∗ ∈ ∂Gλ(u0).

Since the mapping x → ∂Gλ(x) is weak∗ upper semi-continuous, there exists an open
neighborhood N (u0) ⊂ B(u0, δ) = {u ∈ E : ‖u − u0‖ ≤ δ} of u0 such that for each
u ∈ N (u0), we have

〈x∗, h0〉 > 2ε0

for each x∗ ∈ ∂Gλ(u). The set of all such neighborhoods covers Qε0(λ). Therefore there
exists a local refinement {Ni : i ∈ �}, where � denotes the index set. Thus, for every i ∈ �,
there exists a ui ∈ Qε0(λ) such that Ni ⊂ N (ui ). Let ρi (u) denote the distance from u to
the complement of Ni , then ρi is Lipschitz continuous and vanishes outside Ni . Let

βi (u) = ρi

� jρ j (u)

and let

vλ(u) = �βi (u)hi .

Then vλ : Qε0(λ) → E is local Lipschitz and satisfies:

‖vλ(u)‖ ≤ 1,

〈x∗, vλ(u)〉 ≥ 2ε0

for

x∗ ∈ ∂Gλ(u), u ∈ Qε0(λ).

We take n so large that

(a′(λ) + 2)(λn − λ) < ε0, λn − λ < ε0.

Define

Q∗
ε0

(λ) = {u ∈ E : ‖u‖ ≤ k0 + 1, a(λ) − (λn − λ) ≤ Gλ(u) ≤ a(λ) + ε0}, (5)

by (4), similar reasoning show that Q∗
ε0

(λ) �= ∅ and Q∗
ε0

(λ) ⊂ Qε0(λ).
Define

�1 = {u ∈ E : ‖u‖ ≤ k0 + 1}
�2 = {u ∈ E : ‖u‖ ≥ k0 + 2}

�3 = {u ∈ E : either Gλ(u) < a(λ) − (λn − λ) or Gλ(u) > a(λ) + 2ε0}
�4 = {u ∈ E : a(λ) − (λn − λ) ≤ Gλ(u) ≤ a(λ) + ε0}
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Define

ξ(u) = dist(u,�2)

dist(u,�2) + dist(u,�1)
,

ζ(u) = dist(u,�3)

dist(u,�3) + dist(u,�4)
,

where dist denotes the distance functional.
Therefore,

Vλ(u) = ξ(u)ζ(u)vλ(u)

is a locally Lipschitz continuous vector field from E to E . Moreover,

‖Vλ‖ ≤ 1, ∀u ∈ E,

〈x∗, Vλ(u)〉 > 2ε0, ∀u ∈ Q∗
ε0

(λ) x∗ ∈ ∂Gλ(u),

〈x∗, Vλ(u)〉 ≥ 0, ∀u ∈ E .

Consider the initial boundary value problem:

dη(t, u)

dt
= −Vλ(η(t, u)), η(0, u) = u.

By a well known existence theorem for ordinary differential equation in a Banach space there
exists a unique continuous solution η(t, u) such that Gλ(η(t, u)) is non-increasing in t . In
fact,

d

dt
Gλ(η(t, u)) ≤ max

{〈
w,

d

dt
η(t, u)

〉
: w ∈ ∂Gλ(η(t, u))

}

= − min{〈w,−Vλ(η(t, u))〉 : w ∈ ∂Gλ(η(t, u))}
≤
{−2ε0, η(t, u) ∈ Q∗

ε0
(λ);

0, otherwise.

Define

�̃(s, u) =
{

η(2s, u), 0 ≤ s ≤ 1
2 ;

η(1, �n(2s − 1, u)), 1
2 ≤ s ≤ 1.

Then it is easy to check that �̃ ∈ �, we want to prove that

Gλ(�̃(s, u)) ≤ a(λ) − (λn − λ), ∀s ∈ [0, 1], u ∈ A.

which provides the desired contradiction. Choose any u ∈ A, if 0 ≤ s ≤ 1
2 , by (H3) and the

choice of ε0, we get that

Gλ(�̃(s, u)) = Gλ(η(2s, u)) ≤ Gλ(u) ≤ a0(λ) < b0(λ) ≤ a(λ) − 2ε0

≤ a(λ) − (λn − λ). (6)

If 1
2 ≤ s ≤ 1, then �̃(s, u) = η(1, �n(2s − 1, u)), if Gλ(�n(2s − 1, u)) < a(λ) − (λn − λ),

for 1
2 ≤ s ≤ 1, then

Gλ(�̃(s, u))) = Gλ(η(1, �n(2s − 1, u)))

≤ Gλ(η(0, �n(2s − 1, u)))

= Gλ(�n(2s − 1, u))

< a(λ) − (λn − λ). (7)
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If there exists s0 ∈ [ 1
2 , 1
]

such that Gλ(�n(2s0 − 1, u)) ≥ a(λ) − (λn − λ), then by (1◦),
‖�n(2s0 − 1, u)‖ ≤ k0. By (3) and (5), we see that �n(2s0 − 1, u) ∈ Q∗

ε0
(λ). Since

‖η(t, �n(2s0 − 1, u)) − �n(2s0 − 1, u)‖ ≤
∥∥∥∥∥∥

t∫
0

dη(σ, �n(2s0 − 1, u))

dσ
dσ

∥∥∥∥∥∥ ≤ t,

it follows that

‖η(t, �n(2s0 − 1, u))‖ ≤ ‖�n(2s0 − 1, u)‖ + t ≤ k0 + 1, ∀t ∈ [0, 1].
Two cases again:
If Gλ(η(t0, �n(2s0 − 1, u))) < a(λ) − (λn − λ) for some t0 ∈ [0, 1], then

Gλ(�̃(s0, u)) = Gλ(η(1, �n(2s0 − 1, u))) < a(λ) − (λn − λ). (8)

On the other hand, by (3), we see that

a(λ) − (λn − λ) ≤ Gλ(η(1, �n(2s0 − 1, u)))

≤ Gλ(η(t, �n(2s0 − 1, u)))

≤ Gλ(�n(2s0 − 1, u))

≤ a(λ) + ε0,

for all t ∈ [0, 1]. Thus, η(t, �n(2s0 −1, u)) ∈ Q∗
ε0

(λ), for all t ∈ [0, 1]. Since 〈x∗, Vλ(u)〉 >

2ε0,∀u ∈ Q∗
ε0

(λ), x∗ ∈ ∂Gλ(u), we have

Gλ(η(t, �n(2s0 − 1, u))) − Gλ(�n(2s0 − 1, u))

=
t∫

0

dGλ(η(σ, �n(2s0 − 1, u)))

dσ
dσ

≤
t∫

0

max{〈w, Vλ(η(σ, �n(2s0 − 1, u)))〉 :

w ∈ ∂Gλ(η(σ, �n(2s0 − 1, u)))}dσ

≤ −
t∫

0

min{〈w,−Vλ(η(σ, �n(2s0 − 1, u)))〉 :

w ∈ ∂Gλ(η(σ, �n(2s0 − 1, u)))}dσ

≤ −2ε0t.

Therefore, when t = 1, we have that

Gλ(�̃(s0, u)) = Gλ(η(1, �n(2s0 − 1, u)))

≤ Gλ(�n(2s0 − 1, u)) − 2ε0

≤ a(λ) − (λn − λ). (9)

Combining (6), (7), (8) and (9), we get

Gλ(�̃(s, u)) ≤ a(λ) − (λn − λ), ∀s ∈ [0, 1], u ∈ A,

which contradicts the definition of a(λ). This implies that the above claim in case of a(λ) >

b0(λ). Evidently, the claim yields the conclusion (1) of this theorem.
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(40) We prove that the conclusion (1) of theorem 2.1 is still true in case of a(λ) = b0(λ).
Since A is bounded, dA = max{‖u‖ : u ∈ A} < ∞. For ε > 0, T > 0, we define

Q̄(ε, T, λ) = {u ∈ E : ‖u‖ ≤ k0 + 4 + dA, |Gλ(u) − a(λ)| ≤ 3ε, dist(u, B) ≤ 4T }.
Then, Q̄(ε, T, λ) �= ∅ (see the Step 4 of Theorem 2.1 in [14]).
We prove that for ε and T small enough, there exists u ∈ Q̄(ε, T, λ) such that mλ(u) < ε.

If not, there exists δ > 0, ε1 > 0 and T1 ∈ (0, 1) such that

mλ(u) ≥ 3δ, ∀u ∈ Q̄(ε1, T1, λ).

Define

Q̄∗(ε1, T1, λ) = {u ∈ E : ‖u‖ ≤ k0 + 3 + dA, a(λ) − (λn − λ) ≤ Gλ(u) ≤ a(λ) + 3ε1,

dist(u, B) ≤ 3T1}.
The same reasoning shows that Q̄∗(ε1, T1, λ) �= ∅ and Q̄∗(ε1, T1, λ) ⊂ Q̄(ε1, T1, λ). Let

n so large that (λn − λ) < ε1, (a′(λ) + 2)(λn − λ) < ε1 and (λn − λ) < δT1. As the proof
of (30), we can construct a locally Lipschitz continuous mapping V̄λ(u) on E such that

‖V̄λ‖ ≤ 1 ∀u ∈ E,

〈x∗, V̄λ(u)〉 > 2δ, ∀u ∈ Q̄∗(ε1, T1, λ) x∗ ∈ ∂Gλ(u),

〈x∗, V̄λ(u)〉 ≥ 0 ∀u ∈ E .

Define

Q1 = {u ∈ E : ‖u‖ ≤ k0 + 2 + dA, |Gλ(u) − a(λ)| ≤ 2ε1, dist(u, B) ≤ 2T1}.
As the proof of (40), Q1 �= ∅ and Q1 ⊂ Q̄(ε1, T1, λ). Choose a Lipschitz continuous map-
ping γ from E into [0, 1] which equals 1 on Q1 and vanishes outside Q̄(ε1, T1, λ). Consider
the following initial boundary value problem:

dη1(t, u)

dt
= −γ (η1)Vλ(η1), η1(0, u) = u.

By a well known existence theorem for ordinary differential equation in a Banach space there
exists a unique continuous solution η1(t, u) such that Gλ(η1(t, u)) is non-increasing in t . In
fact,

d

dt
Gλ(η1(t, u)) ≤ max

{
〈w,

d

dt
η1(t, u)〉 : w ∈ ∂Gλ(η1(t, u))

}

= − min{〈w,−γ (η1(t, u))Vλ(η1(t, u))〉 : w ∈ ∂Gλ(η1(t, u))}
≤
{−2δγ (η1(t, u)), η1(t, u) ∈ Q̄∗(ε1, T1, λ);

0, otherwise.

Hence, d
dt Gλ(η1(t, u)) ≤ 0.

As the proof Theorem 2.1 in [14], we can obtain that η1(s, u) �∈ B for all s ∈ [0, T1] and
u ∈ A and η1(T1, �n(2s − 1, u)) �∈ B,∀u ∈ A, s ∈ [ 1

2 , 1].
In order to get the final contradiction, we define

�∗
1(s, u) =

{
η1(2sT1, u), 0 ≤ s ≤ 1

2 ;
η1(T1, �n(2s − 1, u)), 1

2 ≤ s ≤ 1.

Then it is easy to check that �∗
1 ∈ �. However, �∗

1(s, A)
⋂

B = ∅ for all s ∈ [0, 1]. We get
the final contradiction.
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As the proof Theorem 2.1 in [14], we can complete the conclusion (1) with the second
alternative (H2).

As an immediate consequence, we have

Theorem 2 Assume that (H1)(or (H2)) and (H3) hold and that A, B are bounded sets which
link each other. If for all λ ∈ 	, any bounded non-smooth (P S)-sequence of Gα (i.e.,
mλ(uk) → 0 and {Gλ(uk)}, {uk} are bounded) possesses a convergent subsequence, then
for almost all λ ∈ 	, Gλ has two different critical points uλ and vλ satisfying

Gλ(uλ) = a(λ), mλ(uλ) = 0; Gλ(vλ) = b(λ), mλ(vλ) = 0.

Particularly, if a(λ) = b(λ), then uλ ∈ B, vλ ∈ A.

3 Some applications

Let � ⊂ RN (N ≥ 3) be a nonempty bounded open subset with a smooth boundary ∂�. In
this section, we are concerned with the multiplicity of the solutions of the following nonlinear
elliptic equation with Dirichlet boundary condition:{−�u ∈ λku + [g−(x, u(x)), g+(x, u(x))], in �,

u = 0, on ∂�,
(10)

where the discontinuous nonlinearities term g(x, t) : � × R → R is a locally bounded
measurable function, and g−(x, t) and g+(x, t) are defined by

g−(x, t) = lim
δ→0

inf|ξ−t |<δ
g(x, ξ), g+(x, t) = lim

δ→0
sup

|ξ−t |<δ

g(x, ξ).

Obviously, g−(x, t) and g+(x, t) are respectively lower semi-continuous and upper semi-
continuous. Denoting by 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λ j ≤ · · · all distinct eigenvalues of
the eigenvalue problem: {−�u = λu in �;

u = 0, on ∂�.

Let {Ek} be the eigenspace corresponding to the eigenvalues λk(k = 1, 2, . . .) and Nk =
E1
⊕

E2
⊕ · · ·⊕ Ek .

In this section, the letter c will be indiscriminately used to denote various constant when
the exact values are irrelevant.

Theorem 3 Suppose that g(x, t) satisfies the following conditions:

(A1) The function g−(x, t) and g+(x, t) are superposition measurable, i.e. if u : � → R
is measurable implies that x �→ g(x, u(x)) is measurable;

(A2) there exist a constant c and 1 < p < N+2
N−2 (N ≥ 3) such that

|g(x, t)| ≤ c(1 + |t |p)

for all x ∈ � and t ∈ R;
(A3)

2G(x, t) ≥ (λk−1 − λk)|t |2

for almost all x ∈ �;
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(A4)

lim
u∈Nk ,‖u‖→∞

∫
�

G(x, u)dx → ∞;

(A5) there exists a eigenvalue λl < λk such that

lim sup
|t |→0

2G(x, t)

|t |2 < λl − λk

uniformly for almost all x ∈ �;

Then for almost all λ ∈
(

λl
λk

, 1
]
, the problem

{−�u ∈ 1
λ
[λku + [g−(x, u(x)), g+(x, u(x))]] in �;

u = 0, on ∂�.
(11)

has two nontrivial solutions. Particularly, the problem (11) has infinitely many solu-
tions. If, in addition,

(A6) there exists θ ∈ (1, 2) and a constant c > 0 such that

lim inf|t |→∞
tg(x, t) − 2G(x, t)

|t |θ > 0

uniformly for almost all x ∈ �, and

tg(x, t) ≤ ct2.

Then the problem (10) has two nontrivial solutions.

As usual, we find solutions of problem (11) as critical points of the functional Gλ defined
by

Gλ(u) = λ

2
‖u‖2 − λk

2

∫
�

|u|2dx −
∫
�

G(x, u)dx, u ∈ H1
0 (�), λ > 0.

Under the assumption of (A1) and (A2), we know that the functional Gλ(u) is locally
Lipschitz on H1

0 (�) (see [1]).

Lemma 1 Gλ(u) → −∞ uniformly for λ ∈ (0, 1] as ‖u‖ → ∞, u ∈ Nk.

Proof It follows the fact

Gλ(u) = λ

2
‖u‖2 − λk

2

∫
�

|u|2dx −
∫
�

G(x, u)dx

≤ 1

2
‖u‖2 − λk

2

∫
�

|u|2dx −
∫
�

G(x, u)dx

≤ −
∫
�

G(x, u)dx

and the assumption (A4), we can easily obtain the conclusion.

Lemma 2 Gλ(u) ≤ 0 for all u ∈ Nk−1, λ ∈ (0, 1].
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Proof By the assumption (A3),∀u ∈ Nk−1, we have

Gλ(u) = λ

2
‖u‖2 − λk

2

∫
�

|u|2dx −
∫
�

G(x, u)dx

≤ 1

2
‖u‖2 − λk

2

∫
�

|u|2dx −
∫
�

G(x, u)dx

≤ 1

2
‖u‖2 − λk

2

∫
�

|u|2dx − 1

2

∫
�

[λk−1 − λk]|u|2dx

≤ 1

2
‖u‖2 − λk−1

2
‖u‖2

2

≤ 0

Lemma 3 Under the assumptions of Theorem 3, there exist ρ0 > 0, c0 > 0 such that

Gλ(u) ≥ c0 f or ‖u‖ = ρ0, u ∈ N⊥
k−1,

where λ ∈
(

λl
λk

, 1
]
.

Proof By the assumption (A5), for small ε > 0, there exists δ > 0 such that

G(x, t) ≤ 1

2
(λl − λk − ε)|t |2, ∀|t | ≤ δ.

By the assumption (A2), we have

G(x, u) ≤ c|u|p+1, ∀|u| ≥ δ.

Hence, ∀u ∈ N⊥
k−1, we have

Gλ(u) = λ

2
‖u‖2 − λk

2

∫
�

|u|2dx −
∫
�

G(x, u)dx

= λ

2

∑
j≥k

λ j‖u j‖2
2 − 1

2
λk

∑
j≥k

‖u j‖2
2 −

∫
{x∈�:|u(x)|≤δ}

G(x, u(x))dx

−
∫

{x∈�:|u(x)|≥δ}
G(x, u(x))dx

≥ 1

2

∑
j≥k

(λλ j − λk)‖u j‖2
2 − 1

2
(λl − λk − ε)

∑
j≥k

‖u j‖2
2 + 1

2
(λl − λk − ε)

×
∫

{x∈�:|u(x)|>δ}
|u(x)|2dx −

∫
{x∈�:|u(x)|>δ}

G(x, u(x))dx

≥ 1

2

∑
j≥k

(λλ j − λl + ε)‖u j‖2
2 − 1

2
(λk − λl + ε)δ1−p

×
∫

{x∈�:|u(x)|>δ}
|u(x)|p+1dx −

∫
{x∈�:|u(x)|>δ}

G(x, u(x))dx
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≥ min
j≥k

[
λλ j − λl

λ j

]∑
j≥k

λ j‖u j‖2
2 − c‖u‖p+1

= min
j≥k

[
λλ j − λl

λ j

]
‖u‖2 − c‖u‖p+1.

Hence, we can find ρ0 > 0 and c0 > 0 such that

Gλ(u) ≥ c0 > 0, ∀u ∈ N⊥
k−1 with ‖u‖ = ρ0 for λ ∈

(
λl

λk
, 1

]
.

Lemma 4 For each λ ∈ 	 ⊂ (0,+∞), any bounded nonsmooth P-S sequence of Gλ(u)

possesses a convergent subsequence.

Proof Assume {un} ⊂ H1
0 (�) bounded such that {Gλ(un)} is bounded and mλ(un) → 0,

where mλ(un) = minw∈∂Gλ(un) ‖w‖, We will show that {un} has a convergent subsequence.

Set ϕ(u) = ∫
�

G(x, u(x))dx . Since ∂Gλ(un) ⊂ H1
0 (�) is a weak∗ compact set and the

norm in Banach space is weakly lower semi-continuous, Thus, there exists wn ∈ ∂Gλ(un)

such that mλ(un) = ‖wn‖.
Define A : H1

0 (�) → H1
0 (�) by

〈Au, v〉 =
∫
�

(∇u,∇v)RN dx

for all u ∈ H1
0 (�), v ∈ H1

0 (�). Here 〈·, ·〉 is the duality pairing between (H1
0 (�))∗ and

H1
0 (�), (·, ·)RN denote the inner product in RN .
Since ∂Gλ(u) ⊂ λAu − λku − ∂ϕ(u), wn = λAun − λkun + vn , where vn ∈ ∂ϕ(un) and

〈wn, v〉 = λ

∫
�

(∇un,∇v)RN dx − λk

∫
�

(un, v)RN dx + 〈vn, v〉.

Since {un} is bounded in H1
0 (�), passing if necessary to a subsequence, we may assume that

un ⇀ u weakly in H1
0 (�), un → u strongly in Lq(�), 1 < q < 2N

N−2 , and un(x) → u(x)

a.e. in �. By the definition of A, it is easy to verify that A is monotone; moreover, A is
demi-continuous, in fact, let un → u in H1

0 (�), then for every v ∈ H1
0 (�) we have

|〈Aun − Au, v〉| =
∣∣∣∣∣∣
∫
�

(∇un − ∇u,∇v)RN dx

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫
�

(∇un,∇v)RN dx −
∫
�

(∇u,∇v)RN dx

∣∣∣∣∣∣ .

Since un → u in H1
0 (�),∇un → ∇u in L2(�). Hence,∫

�

(∇un,∇v)RN dx →
∫
�

(∇u,∇v)RN dx,

that is

|〈Aun − Au, v〉| → 0.
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Because v ∈ H1
0 (�) is arbitrary, it follows that Aun ⇀ Au in H1

0 (�), and so, A is
demi-continuous. Hence, A is maximal monotone.

Since⎡
⎣λ〈Aun, un − u〉 − λk

∫
�

(un, un − u)RN dx + 〈vn, un − u〉
⎤
⎦ = 〈wn, un − u〉.

Thus, we have

lim sup〈Aun, un − u〉 = lim sup
1

λ

⎡
⎣λk

∫
�

(un, un − u)RN dx + 〈wn, un − u〉

+ 〈vn, u − un〉
⎤
⎦ .

According to the definition of the generalized directional derivative, by the assumption
(A1) and Hölder inequality, we have

〈vn, u − un〉 = ϕ0(un; u − un)

=
∫

{x∈�|(u−un)>0}
(u − un)g+(x, un(x))dx

+
∫

{x∈�|(u−un)<0}
(u − un)g−(x, un(x))dx

≤
∫
�

|un − u|g+(x, un(x))dx

≤ c
∫
�

|un − u||un |pdx + c
∫
�

|un − u|dx

≤ c‖un − u‖ 2N
2N−p(N−2)

‖un‖p
2N

N−2
+ c‖un − u‖2

Recall that we have used the fact that

g+(x, un(x)) = lim
δ→0

sup
|ξ−un |<δ

g(x, ξ)

≤ lim
δ→0

sup
|ξ−un |<δ

[c|ξ |p + c]

≤ c lim
δ→0

sup
|ξ−un |<δ

|ξ |p + c

= c lim
δ→0

sup
|η|<δ

|un + η|p + c

= c|un |p + c.

Hence, by the embedding theorem and 1 < p < N+2
N−2 , we have

lim sup〈Aun, un − u〉 ≤ 0.

Because {Aun} ⊂ H1
0 (�) is bounded and so we may assume that Aun ⇀ v in H1

0 (�).
Since A is maximal monotone, it has the property(M) (see [16, p. 583]). Therefore, we have
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v = Au and 〈Aun, un〉 → 〈Au, u〉, that is ‖∇un‖2 → ‖∇u‖2, also because ∇un ⇀ ∇u in
L2(�), Hence, un → u in H1

0 (�).

Proof of Theorem 3 By the Lemma 1, 2 and 3, there exists R0 > ρ0 > 0 such that

a0(λ) = sup
A

Gλ(u) ≤ 0 ≤ c0 ≤ b0(λ) = inf
B

Gλ(u)

for λ ∈ (
λl
λk

, 1], where

A = {u = v + sy : v ∈ Nk−1, s ≥ 0, ‖u‖ = R0}
⋃[

Nk−1

⋂
B̄R0

]
,

with y0 ∈ Ek with ‖y0‖ = 1, and

B = {u ∈ N⊥
k−1 : ‖u‖ = ρ0}.

Theorem 2 implies, for almost all λ ∈ (
λl
λk

, 1], that there are two different critical points
uλ, vλ satisfying

Gλ(uλ) = a(λ) ≥ b0(λ) ≥ c0, mλ(uλ) = 0,

Gλ(vλ) = b(λ) ≤ a0(λ) ≤ 0, mλ(vλ) = 0.

This is the first part of Theorem 3. For the second part of the Theorem 3, we choose λn → 1,
and un such that Gλn (un) = aλn , mλn (un) = 0. We claim that the sequence {un} is bounded
in H1

0 (�).

Next, we prove the claim.
Since ∂Gλn (un) ⊂ H1

0 (�) is a weak∗ compact set and the norm in Banach space is weakly
lower semi-continuous, Thus, there exists wn ∈ ∂Gλn (un) such that mλn (un) = ‖wn‖ and

〈wn, y〉 = λn
∫
�

(∇un,∇ y)dx − λk

∫
�

un(x)y(x)dx − 〈vn, y〉, ∀y ∈ H1
0 (�)

where vn ∈ ∂ϕ(un) and

〈vn, y〉 =
∫
�

pn(x)y(x)dx, pn(x) ∈ [g−(x, un(x)), g+(x, un(x))].

By the assumption (A6), the proof is the same as the lemma 3.3 in [15], we can obtain
that there exist δ > 0 and constant c > 0 such that

tg−(x, t) − 2G(x, t) > c|t |θ , ∀ t ≥ δ

and

tg+(x, t) − 2G(x, t) > c|t |θ , ∀ t ≤ −δ.
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Hence,

c + ‖un‖ ≥ 〈wn, un〉 − 2
∫
�

G(x, un(x))dx

=
∫
�

[pn(x)un(x) − 2G(x, un(x))]dx

≥
∫

{un(x)>0}
[g−(x, un(x))un(x) − 2G(x, un(x))]dx

+
∫

{un(x)<0}
[g+(x, un(x))un(x) − 2G(x, un(x))]dx

=
∫

{un(x)>δ}
[g−(x, un(x))un(x) − 2G(x, un(x))]dx

+
∫

{un(x)<−δ}
[g+(x, un(x))un(x) − 2G(x, un(x))]dx

+
∫

{0<un(x)≤δ}
[g−(x, un(x))un(x) − 2G(x, un(x))]dx

+
∫

{0>un(x)≥−δ}
[g+(x, un(x))un(x) − 2G(x, un(x))]dx

≥ c
∫

{|un |>δ}
|un(x)|θ dx − c.

Taking s = (2−θ)(N−2)
2N+4−Nθ

, then s ∈ (0, 1), and by the Hölder inequality, we have
∫

{|un |>δ}
|un(x)|2dx =

∫
{|un |>δ}

|un(x)|2(1−s)|un(x)|2sdx

≤
⎛
⎜⎝

∫
{|un |>δ}

|un |θ dx

⎞
⎟⎠

2(1−s)
θ
⎛
⎜⎝

∫
{|un |>δ}

|un | 2N+4
N dx

⎞
⎟⎠

2s N
2N+4

≤ (c + c‖un‖) 2(1−s)
θ ‖un‖2s .

It follows from the condition (A6) that

λn‖un‖2 = λk

∫
�

|un(x)|2dx + 〈wn, un〉 +
∫
�

pn(x)un(x)dx

≤ λk

∫
�

|un(x)|2dx + 〈wn, un〉 +
∫

{un(x)>0}
g−(x, un(x))un(x)dx

+
∫

{un(x)<0}
g+(x, un(x))un(x)dx
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≤ (λk + c)

⎡
⎣∫

�

|un(x)|2dx

⎤
⎦+ ‖un‖

= (λk + c)

⎡
⎢⎣

∫
{|un |<δ}

|un(x)|2dx +
∫

{|un |≥δ}
|un(x)|2dx

⎤
⎥⎦+ ‖un‖

≤ c + ‖un‖ + (c + c‖un‖) 2(1−s)
θ ‖un‖2s

Since θ ∈ (1, 2) and s ∈ (0, 1), then 2(1−s)
θ

+ 2s < 2. Thus, we see that {‖un‖} is bounded.
Applying Lemma 4, we know that there exists a u ∈ H1

0 (�) such that un → u in H1
0 (�).

In order to complete the conclusion, we should show that u satisfies m1(u) = 0. In fact, from
the proof in Lemma 4, we see that there exists wn ∈ ∂Gλn (un) such that mλn (un) = ‖wn‖
and

〈wn, v〉 = λn
∫
�

(∇un,∇v)RN dx − λk

∫
�

(un, v)RN dx + 〈vn, v〉, ∀ v ∈ H1
0 (�),

where vn ∈ ∂ϕ(un). Because {un} is bounded in H1
0 (�) and mλn (un) = 0, it is easy to see that

{vn} is bounded in [H1
0 (�)]∗. Since ∂ϕ(un) is w∗-compact, then, there exists v∗ ∈ [H1

0 (�)]∗
such that vn → v∗ (w∗ convergence). Combing un → u in H1

0 (�) and Proposition 1, we
can obtain that v∗ ∈ ∂ϕ(u). Hence, we have proved that

0 = λn
∫
�

(∇un,∇v)RN dx − λk

∫
�

(un, v)RN dx + 〈vn, v〉

→
∫
�

(∇u,∇v)RN dx − λk

∫
�

(u, v)RN dx + 〈v∗, v〉

= 〈Au − λku − v∗, v〉.
Obviously, Au −λku −v∗ ∈ ∂G1(u) and then 0 ∈ ∂G1(u), that is, m1(u) = 0. Accordingly,
u is a nontrivial critical point of functional G1 satisfying

G1(u) ≥ c0, m1(u) = 0.

Similarly, we can obtain another nontrivial critical point of functional G1 satisfying

G1(v) ≥ 0, m1(v) = 0.

It follows by a similar proof as in Theorem 3 that we can obtain the following theorem.

Theorem 4 Suppose that g(x, t) satisfies (A1), (A2), and the following conditions:

(A′
3) there exists m ∈ N satisfying λm < λk , such that

2G(x, t) ≥ (λm−1 − λk)|t |2

uniformly for almost all x ∈ �;
(A4)

lim
u∈Nm ,‖u‖→∞

∫
�

G(x, u)dx → ∞;
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(A5) there exists a eigenvalue λl < λm such that

lim sup
|t |→0

2G(x, t)

|t |2 < λl − λm

uniformly for almost all x ∈ �;

Then for almost all λ ∈
(

λl
λm

, 1
]
, the problem (11) has two nontrivial solutions. Par-

ticularly, the problem (11) has infinitely many solutions. If, in addition,
(A6) there exists θ ∈ (1, 2) and a constant c > 0 such that

lim inf|t |→∞
tg(x, t) − 2G(x, t)

|t |θ > 0

uniformly for almost all x ∈ �, and

tg(x, t) ≤ ct2.

Then the problem (10) has two nontrivial solutions.

Theorem 5 Suppose that g(x, t) satisfies (A1) and the following conditions:

(B1) there exists m ∈ N satisfying λm > λk , and a(x) ∈ L∞(�) such that

λm ≤ lim inf|t |→∞
g(x, t)

t
≤ lim sup

|t |→∞
g(x, t)

t
≤ a(x)

for almost all x ∈ � and 2G(x, t) ≤ (β0 − λk)t2,∀x ∈ �, |t | ≤ r0, where r0 > 0
and β0 ∈ (λm−1, λm);

(B2)

2G(x, t) ≥ (λm−1 − λk)|t |2

for all x ∈ �, t ∈ R;

Then for almost all λ ∈
(

3β0+λm
2(β0+λm )

, 1
]
, the problem (11) has two nontrivial solutions.

Particularly, the problem (11) has infinitely many solutions. If, in addition,
(B3) there exists θ ∈ (1, 2) such that

lim inf|t |→∞
tg(x, t) − 2G(x, t)

|t |θ > 0

uniformly for almost all x ∈ �. Then the problem (10) has two nontrivial solutions.

Lemma 5 Gλ(u) → −∞ uniformly for λ ∈ (0, 1] as ‖u‖ → ∞, u ∈ Nm.

Proof By the assumption (B1), we can obtain that there exists M > 0 such that

2G(x, t) ≥ (λm − ε)|t |2, ∀ ε > 0, |t | ≥ M.
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Hence,

Gλ(u) = λ

2
‖u‖2 − λk

2

∫
�

|u|2dx −
∫
�

G(x, u)dx

≤ λm

2

∫
�

|u|2dx − λk

2

∫
�

|u|2dx −
∫
�

G(x, u)dx

=
[

λm − λk

2

] ∫
�

|u|2dx −
∫

{|u|≥M}
G(x, u)dx −

∫
{|u|<M}

G(x, u)dx

≤
[

ε − λk

2

] ∫
�

|u|2dx +
[

λm − ε

2

] ∫
{|u|<M}

|u|2dx −
∫

{|u|<M}
G(x, u)dx

≤
[

ε − λk

2

] ∫
�

|u|2dx + c.

It follows from the arbitrary property of ε, we can easily obtain the conclusion.

Lemma 6 Under the assumptions of Theorem 5, there exist ρ0 > 0, c0 > 0 such that

Gλ(u) ≥ c0 for ‖u‖ = ρ0, u ∈ N⊥
m−1,

where λ ∈
(

3β0+λm
2(β0+λm )

, 1
]
.

Proof By the assumption (B1), we see that there exists r1 > λm such that

2G(x, t) ≤ r1t2, for |t | ≥ r0, x ∈ �, (12)

where r1 > a(x) ≥ λm , for all x ∈ �. Take r2 = 4r1 − λk . Then, from (12), by a simple
computation, we have that

2G(x, t) ≤ r2t2 − r1r2
0 , for |t | ≥ r0, x ∈ �. (13)

For any u ∈ N⊥
m−1, we write u = v + w with v ∈ Em

⊕
Em+1

⊕ · · ·⊕ El−1 and

w ∈ N⊥
l−1, where l is large enough so that λl >

32β2
0

λm−β0
+ (48r1+4λk )(λm+β0)

λm+3β0
. Let

ξ1 = (r2 + λl)λ − 2λk

4
w2 + (β0 + λm)λ − 2λk

4
v2 − G(x, v + w). (14)

If |v + w| ≤ r0, then by the assumption (B1) and the choice of λl , we have that

ξ1 ≥ (r2 + λl)λ − 2λk

4
w2 + (β0 + λm)λ − 2λk

4
v2 − 1

2
(β0 − λk)(v + w)2

≥ (r2 + λl)λ − 2β0

4
w2 + (β0 + λm)λ − 2β0

4
v2 − 1

2
(β0 − λk)|v||w|

≥
[

1

2
([(r2 + λl)λ − 2β0][(β0 + λm)λ − 2β0]) 1

2 − (β0 − λk)

]
|v||w|

≥ 0.
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If |v + w| ≥ r0, by (13), we have that

ξ1 ≥ (r2 + λl)λ − 2λk

4
w2 + (β0 + λm)λ − 2λk

4
v2 − 1

2
[r2(v + w)2 − r1r2

0 ]

= (r2 + λl)λ − 2λk − 2r2

4
w2 + (β0 + λm)λ − 2λk − 2r2

4
v2 − r2vw + r1r2

0

2

= (r2 + λl)λ − 2λk − 2r2

4
w2 + (β0 + λm)λ − 2λk − 2r2

4
v2 − r2vw + r1r2

0

2

= (r2 + λl)λ − 8r1

4
w2 + (β0 + λm)λ − 8r1

4
v2 − r2vw + r1r2

0

2
= ξ2 + ξ3,

where

ξ2 = (r2 + λl)λ − 8r1

8
w2 + (λm − β0)λ

4
v2 − λβ0vw,

ξ3 = (r2 + λl)λ − 8r1

8
w2 − 4r1 − λβ0

2
v2 − (r2 − λβ0)vw + r1r2

0

2
.

If

λ(λm − β0)

4
|v| − λβ0|w| ≥ 0,

then

ξ2 ≥ (r2 + λl)λ − 8r1

8
w2 +

(
λ(λm − β0)

4
|v| − λβ0|w|

)
|v|

≥ 0.

If

λ(λm − β0)

4
|v| − λβ0|w| ≤ 0,

by the choice of λ and λl , we have that

(r2 + λl)λ − 8r1

8
>

4λβ2
0

λm − β0
.

Thus,

ξ2 ≥ (r2 + λl)λ − 8r1

8
w2 + λ(λm − β0)

4
v2 − λβ0|w||v|

≥
[

(r2 + λl)λ − 8r1

8
− 4λβ2

0

λm − β0

]
w2 + λ(λm − β0)

4
v2

≥ 0.
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On the other hand,

ξ3 ≥ (r2 + λl)λ − 8r1

8
w2 − 4r1 − λβ0

2
v2 − (r2 − λβ0)|w||v| + r1r2

0

2

≥ (r2 + λl)λ − 8r1

8
w2 − 4r1 − λβ0

2
v2 − r2 − λβ0

2
w2 − r2 − λβ0

2
v2 + r1r2

0

2

= (r2 + λl)λ − 24r1 + 4λβ0 + 4λk

8
w2 − 8r1 − λk − 2λβ0

2
v2 + r1r2

0

2

≥ −8r1 − λk − 2λβ0

2
v2 + r1r2

0

2
.

Since dimNl−1 < ∞, we may find a constant Cl−1 such that

max
�

|v| ≤ Cl−1‖v‖ for all v ∈ Nl−1.

Let

δ0 = β0

2(λm + β0)(8r1 − λk − 1
2β0)C2

l−1

(
1 − β0

λm

)

then δ0 > 0. Let

�1 = {x ∈ � : |v + w| ≤ r0}, �2 = {x ∈ � : |v + w| ≥ r0}.
Combing the above estimates, we have that

∫
�

ξ1dx =
∫
�1

ξ1dx +
∫
�2

ξ1dx

≥
∫
�2

ξ1dx

≥
∫
�2

ξ3dx

≥ −8r1 − λk − 2λβ0

2

∫
�2

v2dx + r1r2
0

2
meas�2.

If meas �2 ≥ δ0, then

∫
�

ξ1dx ≥ −8r1 − λk − 2λβ0

2λm
‖v‖2 + r1r2

0

2
δ0. (15)

If meas �2 < δ0, then
∫
�

ξ1dx ≥ −8r1 − λk − 2λβ0

2
C2

l−1‖v‖2meas�2

≥ − β0

4 (λm + β0)

(
1 − β0

λm

)
‖v‖2. (16)
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Hence, by (14) and the choice of λ, we have that

Gλ(u) = Gλ(v + w)

= λ

2
(‖v‖2 + ‖w‖2) − λk

2
(‖v‖2

2 + ‖w‖2
2) −

∫
�

G(x, v + w)dx

≥ λ

4
(‖v‖2 + ‖w‖2) + λ

4
λm‖v‖2

2 + λ

4
λl‖w‖2

2 − λk

2
(‖v‖2

2 + ‖w‖2
2)

−
∫
�

G(x, v + w)dx

= λ

4
(‖w‖2 − r2‖w‖2

2) + λ

4

(‖v‖2 − β0‖v‖2
2

)+
∫
�

ξ1dx

≥ λ

4

(
1 − r2

λl

)
‖w‖2 + λ

4

(
1 − β0

λm

)
‖v‖2 +

∫
�

ξ1dx

≥ β0

2(λm + β0)
min

{(
1 − r2

λl

)
,

(
1 − β0

λm

)}
‖u‖2 +

∫
�

ξ1dx

≥ β0

2(λm + β0)

(
1 − β0

λm

)
‖u‖2 +

∫
�

ξ1dx .

If meas�2 ≥ δ0, by (15), then

Gλ(u) ≥ β0

2(λm + β0)

(
1 − β0

λm

)
‖u‖2 − 8r1 − λk − 2λβ0

2λm
‖v‖2 + r1r2

0

2
δ0

≥ β0

2(λm + β0)

(
1 − β0

λm

)
‖u‖2 − 8r1 − λk − 2λβ0

2λm
‖u‖2 + r1r2

0

2
δ0.

If meas�2 < δ0, by (16), then

Gλ(u) ≥ β0

2(λm + β0)

(
1 − β0

λm

)
‖u‖2 − β0

4(λm + β0)

(
1 − β0

λm

)
‖v‖2

≥ β0

4(λm + β0)

(
1 − β0

λm

)
‖u‖2.

Consequently, we may find ρ0 > 0, c0 > 0 such that Gλ(u) ≥ c0 for ‖u‖ = ρ0, u ∈ N⊥
m−1,

and λ ∈
(

3β0+λm
2(β0+λm )

, 1
]
.

Combining Lemma 5 and 6, with the similar proof as Theorem 3, we can complete
Theorem 5.
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